
Контрольная работа №2 

В задачах 161 - 180 найти неопределенные интегралы: 
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В задачах 181 - 200 вычислить площадь фигуры, ограниченной 

линиями: 

181. ;862 +−= xxy     .2+= xy  

182. ;322 −+= xxy     .1+−= xy  

183. ;1282 ++= xxy    .2+= xy  

184. ;562 +−= xxy     .5−= xy  

185. ;222 ++= xxy     .6+−= xy  

186. ;362 +−= xxy     .7+−= xy  

187. ;1362 +−= xxy    .7+= xy  

188. ;322 −−= xxy     .1+= xy  

189. ;562 ++= xxy     .1−−= xy  

190. ;1282 +−= xxy    .6+−= xy  

191. ;862 +−= xxy     .2−= xy  

192. ;322 −+= xxy     .7+−= xy  

193. ;342 ++= xxy     .7+= xy  

194. ;1062 +−= xxy    .4+= xy  

195. ;322 −+= xxy     .3+= xy  

196. ;862 ++= xxy     .2+−= xy  

197. ;1282 +−= xxy    .2+−= xy  



198. ;1062 ++= xxy    .2+−= xy  

199. ;222 +−= xxy     .6+= xy  

200. ;562 +−= xxy     .2−= xy  

В задачах 201 - 207 вычислить площадь фигуры, ограниченной 

кривой, заданной в полярной системе координат: 
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В задачах 208 - 212 найти длину дуги кривой: 

208. ;1 2xy −=            .10  x  

209. ;)1( 3+= xy         .40  x  
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211. ;sin2 =r             .0    

212. ;cos4 =r             .
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   



В задачах 213 - 220 найти объем тела, образованного 

вращением вокруг оси Ox фигуры, расположенной в первой четверти 

и ограниченной осью Ox и линиями: 
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В задачах 221 - 240 вычислить несобственный интеграл или 

установить его расходимость: 
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В задачах 241 - 247 задана функция );( yxfz = . Найти в заданной 

точке );( 00 yxM  градиент и производную в направлении вектора l , 

составляющего угол   с положительным направлением оси Ox . 
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В задачах 248 - 260 задана функция );( yxfz = . Найти в заданной 

точке );( 00 yxM  градиент и производную в направлении вектора a . 

248. ),45ln( 22 yxz +=           ),1;1(M        .2 jia −=  
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251. ,3 yexz =                       ),0;1(−M     .43 jia +=  
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y
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z =                        ),1;0(M        .2 jia −=  

253. ,32 22 yxyxz ++=         ),1;2(M        .43 jia −=  
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y
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255. ),(xyarctgz =                 ),1;2(M        .72 jia −=  

256. ,12 223 ++−= xyyxxz   ),2;1(M        .43 jia +=  

257. ),( 22 yxarctgz =             ),1;1( −M      .125 jia −=  

258. ),34ln( 22 yxz +=           ),1;1( −M      .43 jia −=  

259. ,2 223 yyxxz ++=         ),2;1( −M      .34 jia −=  
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В задачах 261 - 280 найти экстремум функции: 

261. .3652 22 ++++−= yxyxyxz  

262. .152234 22 −−+++= yxyxyxz  

263. .47543 22 +−−+−= yxyxyxz  



264. .588245 22 −+−+−= yxyxyxz  

265. .2264524 22 +++−+−= yxyxyxz  

266. .15332 22 −−++= xyxyxz  

267. .532256 22 +−−+−= yxyxyxz  

268. .7222 −−−++= yxyxyxz  

269. .47235 22 +−−+−= yxyxyxz  

270. .68743 22 yxyxyxz +−++=  

271. .672354 22 −++++= yxyxyxz  

272. .23537 22 −++−+−= yxyxyxz  

273. .326623 22 −+−+−= yxyxyxz  

274. .848722 22 ++−−−= yxyxyxz  

275. .14845 22 −−−++= yxyxyxz  

276. .522 +−+++= yxyxyxz  

277. .49253 22 −−+−−= yxyxyxz  

278. .7844 22 +−++−= yxyxyxz  

279. .2452 22 +−−++= yxyxyxz  

280. .362326 22 −++−−= yxyxyxz  

В задачах 281 - 300 найти общее решение (общий интеграл) 

дифференциального уравнения первого порядка. 

281. 𝑦′ = 𝑒
𝑦

𝑥 +
𝑦

𝑥
 . 

282. 𝑦′ = −
2𝑥+𝑦

𝑥
 . 

283. 𝑥2𝑦′ = (𝑥 − 𝑦)𝑦. 



284. 2𝑥𝑦𝑦′ = 𝑥2 + 𝑦2. 

285. (2√𝑥𝑦 − 𝑦′) + 𝑦 = 0. 

286. 𝑥𝑦′ = 𝑦 + √𝑥2 + 𝑦2. 

287. 𝑥 + 2𝑦 − 𝑥𝑦′ = 0. 

288. 𝑥2𝑦′ + 𝑦(𝑦 − 2𝑥) = 0. 

289. 𝑥(𝑥 − 𝑦)𝑦′ + 𝑦2 = 0. 

290. 𝑦′ =
𝑦

𝑥
+ 𝑡𝑔

𝑦

𝑥
 . 

291. 𝑥𝑦′ = 𝑦 + 𝑥𝑒
𝑦

𝑥. 

292. 𝑦′ =
𝑦+√𝑦2−𝑥2

𝑥
 . 

293. 𝑦′ =
𝑦

𝑥
+ 𝑐𝑜𝑠2 𝑦

𝑥
 . 

294. 𝑥𝑦′ = 𝑦 ln
𝑦

𝑥
 . 

295. (√𝑥𝑦 − 𝑥)𝑦′ + 𝑦 = 0. 

296. 𝑥 cos
𝑦

𝑥
∙ 𝑦′ = 𝑦 ∙ cos

𝑦

𝑥
− 𝑥. 

297. 𝑥𝑦′ = 𝑦 − 𝑥𝑒
𝑦

𝑥. 

298. 𝑥𝑦′ = 𝑦 + √𝑥𝑦. 

299. 𝑥𝑦′ − 𝑦 = (𝑥 + 𝑦) ln
𝑥+𝑦

𝑥
 . 

300. 𝑥𝑦′ − 𝑦 = 𝑒−
𝑦

𝑥. 

В задачах 301 - 320 найти частное решение дифференциального 

уравнения первого порядка, удовлетворяющее данному начальному 

условию. 

301. 𝑥𝑦′ − 2y = 2𝑥4, y(1) = 3. 

302. (2𝑥 + 1)𝑦′ = 4𝑥 − 2𝑦, 𝑦(0) = 1. 

303. (3𝑥 − 2)𝑦′ = 9𝑥 + 3𝑦, 𝑦(1) = 3. 



304. 𝑦′ + 𝑦 ∙ 𝑡𝑔𝑥 = 𝑐𝑜𝑠2𝑥, 𝑦(0) = 2. 

305. 𝑥𝑦′ = 𝑥𝑦 + 𝑒𝑥 , 𝑦(1) = 𝑒. 

306. 𝑥2𝑦′ + 𝑥𝑦 + 2 = 0, 𝑦(1) = 4.  

307. 𝑥𝑦′ − 𝑦 = 𝑥2 cos 𝑥,   𝑦 (
𝜋

6
) =

𝜋

12
 . 

308. 𝑦′ − 2𝑥𝑦 = 𝑒𝑥2+𝑥 , 𝑦(0) = 2. 

309. 𝑥𝑦′ −
2𝑦

ln 𝑥
= 1, 𝑦(𝑒) = 1. 

310. 𝑥𝑦′ + (𝑥 + 1)𝑦 = 3𝑥2𝑒−𝑥 , 𝑦(1) = 1. 

311. 𝑦′ − 𝑦 ∙ 𝑐𝑡𝑔𝑥 = 𝑠𝑖𝑛2𝑥, 𝑦 (
𝜋

2
) = 1. 

312. 𝑦′ + 𝑦 = 2𝑒𝑥 , 𝑦(0) = 3. 

313. 𝑦′ − 𝑦 ∙ 𝑐𝑡𝑔𝑥 = 2𝑥 sin 𝑥, 𝑦 (
𝜋

2
) = 1. 

314. 𝑦′ +
𝑦

𝑥+1
= −𝑦2, 𝑦(0) = 1. 

315. 𝑦′ − 𝑦 ∙ 𝑡𝑔𝑥 = 𝑦4 ∙ cos 𝑥, 𝑦(0) =
1

3
  . 

316. 𝑦′ −
𝑦

𝑥
=

𝑥

𝑦2  , 𝑦(1) = 3. 

317. 𝑦′ −
4𝑦

𝑥
= 2𝑥√𝑦, 𝑦(1) = 1. 

318. 𝑦′ +
2𝑦

𝑥
= −𝑥4𝑦3𝑒𝑥 , 𝑦(1) = 1. 

319. 2𝑦′ −
𝑥𝑦

𝑥2−1
=

𝑥

𝑦
 , 𝑦(√2) = 1. 

320. 2𝑥𝑦′ − 𝑦 = 𝑦3 ∙ sin 𝑥, 𝑦 (
𝜋

2
) = 1.  

В задачах 321 - 340 найти частное решение линейного 

неоднородного дифференциального уравнения второго порядка с 

постоянными коэффициентами, удовлетворяющее данным 

начальным условиям.  

321. 𝑦′′ − 2𝑦′ − 3𝑦 = 𝑒4𝑥 , 𝑦(0) =
1

5
 , 𝑦′(0) = −

1

5
 . 



322. 𝑦′′ + 𝑦 = 4𝑥𝑒𝑥 , 𝑦(0) = 0, 𝑦′(0) = 1.  

323. 𝑦′′ − 7𝑦′ + 6𝑦 = (𝑥 − 2)𝑒𝑥 , 𝑦(0) = 0,05, 𝑦′(0) = 0,06. 

324. 𝑦′′ − 5𝑦′ + 4𝑦 = 4𝑥2𝑒2𝑥 , 𝑦(0) = 2, 𝑦′(0) = 7. 

325. 𝑦′′ + 3𝑦′ − 4𝑦 = 𝑒−4𝑥, 𝑦(0) =
1

5
 , 𝑦′(0) = 0. 

326. 𝑦′′ − 2𝑦′ + 𝑦 = 6𝑥𝑒𝑥 , 𝑦(0) = 1, 𝑦′(0) = 2.  

327. 𝑦′′ + 4𝑦′ + 4𝑦 = 𝑥𝑒2𝑥 , 𝑦(0) = −
1

32
, 𝑦′(0) = 1. 

328. 𝑦′′ + 4𝑦′ + 3𝑦 = 𝑥, 𝑦(0) = −
1

9
 , 𝑦′(0) = 0. 

329. 𝑦′′ − 𝑦 = 2𝑒𝑥 , 𝑦(0) = 2, 𝑦′(0) = 1. 

330. 𝑦′′ + 2𝑦′ − 3𝑦 = 𝑥2𝑒𝑥 , 𝑦(0) =
31

32
 , 𝑦′(0) = −3. 

331. 𝑦′′ − 7𝑦′ + 12 = −𝑒4𝑥 , 𝑦(0) = 0, 𝑦′(0) = 0. 

332. 𝑦′′ − 2𝑦′ = 𝑥2 − 1, 𝑦(0) = 1, 𝑦′(0) =
1

4
 . 

333. 𝑦′′ − 2𝑦′ + 𝑦 = 2𝑒𝑥 , 𝑦(0) = 1, 𝑦′(0) = 1. 

334. 𝑦′′ − 3𝑦′ = 2 − 6𝑥, 𝑦(0) = 2, 𝑦′(0) = 3. 

335. 𝑦′′ + 9𝑦 = 6𝑒3𝑥 , 𝑦(0) =
4

3
 , 𝑦′(0) = 4.  

336. 𝑦′′ − 4𝑦 = 𝑥 + 1, 𝑦(0) = 0, 𝑦′(0) = 0. 

337. 𝑦′′ − 6𝑦′ + 9𝑦 = 9𝑥2 + 6𝑥 + 1, 𝑦(0) = 2, 𝑦′(0) = 6. 

338. 𝑦′′ + 4𝑦 = 8𝑥2, 𝑦(0) = −1, 𝑦′(0) = 2. 

339. 𝑦′′ − 8𝑦′ = 16𝑥 + 6, 𝑦(0) = 0, 𝑦′(0) = 7. 

340. 𝑦′′ + 16𝑦 = 100𝑥𝑒4𝑥 , 𝑦(0) = 1, 𝑦′(0) = 5. 

 

 


